The risk of transfer of foreign gene to micro-organism
* It was reported in 1994 that gene transfer can occur from plants to micro-organisms.
Genetically engineered oilseed rape, black mustard, thorn-apple and sweet peas all containing
an antibiotic-resistance gene were grown together with the fungus Aspergillus niger or their
leaves were added to the soil. The fungus was shown to have incorporated the
antibiotic-resistance gene in all co-culture experiments (Hoffmann et al., 1994). It is worth
noting that micro-organisms can transfer genes through several mechanisms to other unrelated
micro-organisms.
* This risk caused UK Environment Department's Biotehnology Unit to advise the UK government
to vote in the EU against the authorisation for placing onto the market of Ciba Geigy's
transgenic corn in 1996: "the presence of an intact gene for resistance to beta-lac tam
antibiotics poses an unacceptable risk because consumption of the unprocessed product as animal
feed could lead to the transfer of the gene to the gut microflora of animals." Ciba Geigy's
genetically engineered corn contained among other foreign genes a gene for resistance against
Ampicillin antibiotics (beta-lac tam antibiotics).
Nasty surprises
* Genetically engineered soil bacteria Klebsiella: A common harmless variety of a bacteria
Klebsiella planticola, inhabiting the root-zone of plants had been genetically engineered to
transform plant residues like leaves into ethanol that farmers could readily use as a fuel. The
genetically engineered bacteria not only survived and competed successfully with their parent
strain in different soil types, it proved unexpectedly to inhibit growth or kill off grass in
different soil types tested. In sandy soil, most of the grasses died from alcohol poisoning. In
all soil types the population of beneficial mycorrhizal fungi in the soil decreased. These soil
fungi are crucial for plant health and growth as they help plants to take up nutritions and to
resist common diseases. In clay soils, the genetically engineered bacteria increased as well
the number of root-feeding nematodes. (Holmes and Ingham, 1995).
* Genetically engineered salmon: The transgenic salmon was engineered with an arctic
flounder gene for increased cold tolerance. However, this transgenic salmon grows ten times as
fast as normal salmon as the genetic modification resulted in an increased activity of the
salmon's own growth hormone gene (MacKenzie, 1996).
* The bacteria Pseudomonas putida was genetically engineered to degrade the herbicide 2,4-D.
The engineered bacteria broke down the herbicide but degraded it to a substance that was highly
toxic to fungi. These fungi - crucial to soil fertility and in protecting plants against
diseases - were therefore destroyed (summarised in Doyle et al., 1995).
* The toxin-producing gene of the bacteria Bacillus thurigiensis, for instance, is commonly
engineered into crops to provide them with a built-in insecticide. However, the toxin produced
is known to resist degradation by binding itself to small soil particles whilst continuing its
toxic activity. The long term impact of this toxin on soil organisms and soil fertility is
unknown (summarised in Doyle et al., 1995).
Deadlier viruses
* Genetically engineered virus resistant crops may cause the development of new kinds of
plant viruses due to recombination events. Scientists published a study demonstrating that virus
genes implanted into plants cells could be transfered into the genome of other viruses that the
plants come into contact with (Greene and Allison, 1994). This could lead to the unintentional
creation of new, and perhaps more virulent, plant viruses.
Allergies
* A new study showed that genetically engineered soybeans containing one foreign Brazil nut
gene could cause allergic reactions in Brazil nuts sensitive humans (Nordlee et al., 1996). The
discovery of the allergenic potential of Pioneer's genetically engineered soybean prior to its
use as human food sources was thanks to a unique advantage: the donor organism for the gene,
Brazil nut, was a known food allergen, and serum samples of persons known to be allergic to
Brazil nuts were available for testing. However, in many cases it is not genes from long known
food plants that are transfered into crops. Genes from bacteria which have never been part of
the diet are more common components. This is the case with Monsanto's RRS. Who knows what the
allergenic potential of this newly introduced gene product will be? It is uncertain,
unpredictable and untestable (Nestle, 1996).
REFERENCES